Author:
MAZARI-ARMIDA MARCOS,VASEY SEBASTIEN
Abstract
AbstractShelah has provided sufficient conditions for an ${\Bbb L}_{\omega _1 ,\omega } $-sentence ψ to have arbitrarily large models and for a Morley-like theorem to hold of ψ. These conditions involve structural and set-theoretic assumptions on all the ${\aleph _n}$’s. Using tools of Boney, Shelah, and the second author, we give assumptions on ${\aleph _0}$ and ${\aleph _1}$ which suffice when ψ is restricted to be universal:Theorem. Assume ${2^{{\aleph _0}}} < {2^{{\aleph _1}}}$. Let ψ be a universal ${\Bbb L}_{\omega _1 ,\omega } $-sentence.(1)If ψ is categorical in ${\aleph _0}$ and $1 \leqslant {\Bbb L}\left( {\psi ,\aleph _1 } \right) < 2^{\aleph _1 } $, then ψ has arbitrarily large models and categoricity of ψ in some uncountable cardinal implies categoricity of ψ in all uncountable cardinals.(2)If ψ is categorical in ${\aleph _1}$, then ψ is categorical in all uncountable cardinals.The theorem generalizes to the framework of ${\Bbb L}_{\omega _1 ,\omega } $-definable tame abstract elementary classes with primes.
Publisher
Cambridge University Press (CUP)
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献