BEING LOW ALONG A SEQUENCE AND ELSEWHERE

Author:

MERKLE WOLFGANG,YU LIANG

Abstract

AbstractLet an oracle be called low for prefix-free complexity on a set in case access to the oracle improves the prefix-free complexities of the members of the set at most by an additive constant. Let an oracle be called weakly low for prefix-free complexity on a set in case the oracle is low for prefix-free complexity on an infinite subset of the given set. Furthermore, let an oracle be called low and weakly for prefix-free complexity along a sequence in case the oracle is low and weakly low, respectively, for prefix-free complexity on the set of initial segments of the sequence. Our two main results are the following characterizations. An oracle is low for prefix-free complexity if and only if it is low for prefix-free complexity along some sequences if and only if it is low for prefix-free complexity along all sequences. An oracle is weakly low for prefix-free complexity if and only if it is weakly low for prefix-free complexity along some sequence if and only if it is weakly low for prefix-free complexity along almost all sequences. As a tool for proving these results, we show that prefix-free complexity differs from its expected value with respect to an oracle chosen uniformly at random at most by an additive constant, and that similar results hold for related notions such as a priori probability. Furthermore, we demonstrate that on every infinite set almost all oracles are weakly low but are not low for prefix-free complexity, while by Shoenfield absoluteness there is an infinite set on which uncountably many oracles are low for prefix-free complexity. Finally, we obtain no-gap results, introduce weakly low reducibility, or WLK-reducibility for short, and show that all its degrees except the greatest one are countable.

Publisher

Cambridge University Press (CUP)

Subject

Logic,Philosophy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3