Biological radiation dose from secondary particles in a Milky Way gamma-ray burst

Author:

Atri Dimitra,Melott Adrian L.,Karam Andrew

Abstract

AbstractGamma-ray bursts (GRBs) are a class of highly energetic explosions emitting radiation in a very short timescale of a few seconds and with a very narrow opening angle. Although, all GRBs observed so far are extragalactic in origin, there is a high probability of a GRB of galactic origin beaming towards the Earth in the past ∼0.5 Gyr. We define the level of catastrophic damage to the biosphere as approximation 100 kJ m−2, based on Thomas et al. (2005a, b). Using results in Melott & Thomas (2011), we estimate the probability of the Earth receiving this fluence from a GRB of any type, as 87% during the last 500 Myr. Such an intense burst of gamma rays would ionize the atmosphere and deplete the ozone (O3) layer. With depleted O3, there will be an increased flux of Solar UVB on the Earth's surface with potentially harmful biological effects. In addition to the atmospheric damage, secondary particles produced by gamma ray-induced showers will reach the surface. Among all secondary particles, muons dominate the ground-level secondary particle flux (99% of the total number of particles) and are potentially of biological significance. Using the Monte Carlo simulation code CORSIKA, we modelled the air showers produced by gamma-ray primaries up to 100 GeV. We found that the number of muons produced by the electromagnetic component of hypothetical galactic GRBs significantly increases the total muon flux. However, since the muon production efficiency is extremely low for photon energies below 100 GeV, and because GRBs radiate strongly for only a very short time, we find that the biological radiation dose from secondary muons is negligible. The main mechanism of biological damage from GRBs is through Solar UVB irradiation from the loss of O3 in the upper atmosphere.

Publisher

Cambridge University Press (CUP)

Subject

Earth and Planetary Sciences (miscellaneous),Space and Planetary Science,Physics and Astronomy (miscellaneous),Ecology, Evolution, Behavior and Systematics

Reference29 articles.

1. Astrophysical Ionizing Radiation and Earth: A Brief Review and Census of Intermittent Intense Sources

2. Dieter H. (1998). CORSIKA: A Monte Carlo program to simulate extensive air showers. Forschungszentrum Karlsruhe Report, FZKA 6019.

3. Serino M. (2012). GRB 120424A: MAXI/GSC detection of a burst. GRB Coordinates Network, Circular Service, 13261, 1.

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3