Fossils and astrobiology: new protocols for cell evolution in deep time

Author:

Brasier Martin D.,Wacey David

Abstract

AbstractThe study of life remote in space has strong parallels with the study of life remote in time. Both are dependent on decoding those historic phenomena called ‘fossils’, here taken to include biogenic traces of activity and waste products. There is the shared problem of data restoration from incomplete data sets; the importance of contextual analysis of potentially viable habitats; the centrality of cell theory; the need to reject the null hypothesis of an abiogenic origin for candidate cells via morphospace analysis; the need to demonstrate biology-like behaviour (e.g., association with biofilm-like structures; tendency to form clusters and ‘mats’; and a preference for certain substrates), and of metabolism-like behaviour (e.g., within the candidate cell wall; within surrounding ‘waste products’; evidence for syntrophy and metabolic cycles; and evidence for metabolic tiers). We combine these ideas into a robust protocol for demonstrating ancient or extra-terrestrial life, drawing examples from Earth's early geological record, in particular from the earliest known freshwater communities of the 1.0 Ga Torridonian of Scotland, from the 1.9 Ga Gunflint Chert of Canada, from the 3.4 Ga Strelley Pool sandstone of Australia, and from the 3.46 Ga Apex Chert also of Australia.

Publisher

Cambridge University Press (CUP)

Subject

Earth and Planetary Sciences (miscellaneous),Space and Planetary Science,Physics and Astronomy (miscellaneous),Ecology, Evolution, Behavior and Systematics

Reference100 articles.

1. Transmission Electron Microscopy

2. Microfossils of sulphur-metabolizing cells in 3.4-billion-year-old rocks of Western Australia

3. Wacey D. , McLoughlin N. , Stoakes C.A. , Kilburn M.R. , Green O.R. & Brasier M.D. (2010b). The 3426–3350 Ma Strelley Pool Formation in the East Strelley Greenstone Belt – A Field and Petrographic Guide. Geological Survey of Western Australia Record 2010/10, Perth, p. 71.

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3