Survival of organic compounds in ejecta from hypervelocity impacts on ice

Author:

Bowden S.A.,Parnell J.,Burchell M.J.

Abstract

AbstractHypervelocity impacts (HVIs) where organic-bearing ice constitutes the target material are important in several aspects of planetary and space science: (1) sampling of planetary surfaces using a hypervelocity projectile to impact the surface and eject surface materials for measurement or collection by a spacecraft; (2) the transfer of organic material between planetary bodies; and (3) providing energy for chemical processes involving surface materials. While small organic molecules (~6 carbon atoms), if present in surface materials, will likely be present in HVI-ejecta, uncertainty remains for larger organic molecules. It is the larger molecular weight compounds which could constitute direct evidence of life, and thus their survival within an HVI-ejecta plume is of key importance when evaluating strategies for life detection on icy bodies. It is not currently known what large organic molecules, and in what concentrations, may be present on icy bodies in the Solar System, but it is highly likely some will be more chemically stable during a HVI than others. Accordingly, in this study we examined a range of chemicals (β,β carotene, stearic acid and anthracene) with molecular weights between 178 and 536 daltons, and three different types of chemical structure. The compounds were solvated in a dimethylsulfoxide/water mixture and frozen. The frozen targets were impacted with steel spheres 1 and 1.5 mm in diameter at velocities of about 4.9 km s−1. Ice ejected during the impact was collected and underwent chemical analysis. The most labile compound (β,β carotene) was only detected (in small amounts) in the ejecta (and only that emitted at the lowest angles of ejection), although the other compounds were present in larger quantities and at a range of ejection angles. A concentration gradient was observed within the ejecta as a function of angle of ejection. This was not the same for both stearic acid and anthracene: the greatest concentrations of stearic acid were found at shallow angles of ejection whereas anthracene was most abundant at both intermediate and large angles of ejection, implying an inverted concentration gradient. These observations may indicate that organic compounds are variably altered and destroyed during a HVI with ice and that the ejecta plume does not sample the original materials equally at all angles of ejection. Future work is planned and will evaluate fractional survival for a greater range of compound types, impact materials and velocities.

Publisher

Cambridge University Press (CUP)

Subject

Earth and Planetary Sciences (miscellaneous),Space and Planetary Science,Physics and Astronomy (miscellaneous),Ecology, Evolution, Behavior and Systematics

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3