How do microorganisms reach the stratosphere?

Author:

Wainwright M.,Alharbi S.,Wickramasinghe N.C.

Abstract

A number of studies have demonstrated that bacteria and fungi are present in the stratosphere. Since the tropopause is generally regarded as a barrier to the upward movement of particles it is difficult to see how such microorganisms can reach heights above 17 km. Volcanoes provide an obvious means by which this could be achieved, but these occur infrequently and any microorganisms entering the stratosphere from this source will rapidly fall out of the stratosphere. Here, we suggest mechanisms by which microorganisms might reach the stratosphere on a more regular basis; such mechanisms are, however, likely only to explain how micrometre to submicrometre particles could be elevated into the stratosphere. Intriguingly, clumps of bacteria of size in excess of 10 μm have been found in stratospheric samples. It is difficult to understand how such clumps could be ejected from the Earth to this height, suggesting that such bacterial masses may be incoming to Earth. We suggest that the stratospheric microflora is made up of two components: (a) a mixed population of bacteria and fungi derived from Earth, which can occasionally be cultured; and (b) a population made up of clumps of, viable but non-culturable, bacteria which are too large to have originated from Earth; these, we suggest, have arrived in the stratosphere from space. Finally, we speculate on the possibility that the transfer of bacteria from the Earth to the highly mutagenic stratosphere may have played a role in bacterial evolution.

Publisher

Cambridge University Press (CUP)

Subject

Earth and Planetary Sciences (miscellaneous),Space and Planetary Science,Physics and Astronomy (miscellaneous),Ecology, Evolution, Behavior and Systematics

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3