Biological effects of gamma-ray bursts: distances for severe damage on the biota

Author:

Galante Douglas,Ernesto Horvath Jorge

Abstract

In this paper we present a unified, quantitative synthesis of analytical and numerical calculations of the effects that could be caused on Earth by a gamma-ray burst (GRB), considering atmospheric and biological implications. The main consequences of the illumination by a GRB are grouped into four distinct classes and analysed separately, namely: direct γ flash, UV flash, O3 layer depletion and cosmic rays. The effectiveness of each of these classes is compared and distances for significant biological damage are given for each one. We find that the first three effects have the potential to cause global environmental changes and biospheric damage, even if the source is located at galactic distances or even farther afield (up to 150 kpc, where 1 parsec=3.09×1016 m, about five times the Galactic diameter of 30 kpc). Instead, cosmic rays would only be a serious threat for close sources (of the order of a few parsecs).As a concrete application from a well-recorded event, the effects on the biosphere of an event identical to the giant flare of SGR1806-20 on 27 December 2004 have been calculated. In spite of not belonging to the so-called ‘classical’ GRBs, most of the parameters of this recent flare are quite well known and have been used as a calibration for our study. We find that a giant flare impinging on Earth is not a threat for life in all practical situations, mainly because it is not as energetic, in spite of being much more frequent than GRBs, unless the source happens to be extremely close.

Publisher

Cambridge University Press (CUP)

Subject

Earth and Planetary Sciences (miscellaneous),Space and Planetary Science,Physics and Astronomy (miscellaneous),Ecology, Evolution, Behavior and Systematics

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Earth’s atmosphere protects the biosphere from nearby supernovae;Communications Earth & Environment;2024-06-14

2. Supernovae and the Earth;The Journal of the Geological Society of Japan;2023-02-22

3. Describing the evolution and perturbations to biodiversity using a simple dynamical model;Astronomische Nachrichten;2023-02-02

4. The Fermi paradox: impact of astrophysical processes and dynamical evolution;International Journal of Astrobiology;2022-07-15

5. The best place and time to live in the Milky Way;Astronomy & Astrophysics;2021-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3