Abstract
AbstractThe astonishing capability of life to adapt to extreme conditions has provided a new perspective on what ‘habitable’ means. On Earth extremophiles thrive in hostile habitats, such as hot and cold deserts or Antarctic sub-glacial lakes considered as Earth analogues of Mars and icy moons of Jupiter and Saturn. Recently desert cyanobacteria were exposed to ground-based simulations of space and Martian conditions and to real space and Martian conditions simulated in low Earth orbit using facilities attached outside the International Space Station. When exposure to such conditions does not exceed repair capabilities, more data are available regarding the physico-chemical constraints that life can withstand. When the accumulated damage exceeds the survival potential, the persistence of biomarkers contributes to the search for life elsewhere. Knowledge concerning the endurance of desert cyanobacteria under space and Martian conditions contributes to the development of life support systems.
Publisher
Cambridge University Press (CUP)
Subject
Earth and Planetary Sciences (miscellaneous),Space and Planetary Science,Physics and Astronomy (miscellaneous),Ecology, Evolution, Behavior and Systematics
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献