New model of Mars surface irradiation for the climate simulation chamber ‘Artificial Mars’

Author:

Tarasashvili M.V.,Sabashvili Sh.A.,Tsereteli S.L.,Aleksidze N.G.

Abstract

AbstractA new model of the Mars surface irradiation has been developed for the imitation of radiation–temperature parameters within Mars Climate Simulation Chamber (MCSC). In order to determine the values of annual and diurnal variations of the irradiance on the Martian surface, the Solar illumination E has been expressed by the distance r between the Sun and Mars and the Sun's altitude z in the Martian sky, along with its midday zenith distance zmin. The arrangements of spring and autumn equinoxes as well as summer and winter solstice points in the Martian sky are discussed regarding the perihelion of Mars. Annual orbital points and variability of Solar zmin for different planetary latitudes have been calculated for the 15 selected values of Mars's true anomaly, along with the illumination E for 12 hourly moments of Martian daytime on the Martian equator. These original calculations and the data which have been obtained are used for the construction of technical tools imitating variations of the surface irradiation and temperature within MCSC, programming of the supporting computer and the electric scheme, which provide proper remote control and set the environmental parameters that are analogues to the 24 hours 39 minutes circadian cycle on planet Mars. Spectral distribution as monochromatic irradiance, humidity control, atmospheric composition and other environmental parameters of planet Mars are also imitated and remotely controlled within MCSC, however, are not discussed in this particular article.

Publisher

Cambridge University Press (CUP)

Subject

Earth and Planetary Sciences (miscellaneous),Space and Planetary Science,Physics and Astronomy (miscellaneous),Ecology, Evolution, Behavior and Systematics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3