High-power 1560 nm single-frequency erbium fiber amplifier core-pumped at 1480 nm

Author:

Cheng XinORCID,Lin Zhiquan,Yang Xuezong,Cui Shuizhen,Zeng XinORCID,Jiang Huawei,Feng Yan

Abstract

Abstract High-power continuous-wave single-frequency Er-doped fiber amplifiers at 1560 nm by in-band and core pumping of a 1480 nm Raman fiber laser are investigated in detail. Both co- and counter-pumping configurations are studied experimentally. Up to 59.1 W output and 90% efficiency were obtained in the fundamental mode and linear polarization in the co-pumped case, while less power and efficiency were achieved in the counter-pumped setup for additional loss. The amplifier performs indistinguishably in terms of laser linewidth and relative intensity noise in the frequency range up to 10 MHz for both configurations. However, the spectral pedestal is raised in co-pumping, caused by cross-phase modulation between the pump and signal laser, which is observed and analyzed for the first time. Nevertheless, the spectral pedestal is 34.9 dB below the peak, which has a negligible effect for most applications.

Funder

National Natural Science Foundation of China

Publisher

Cambridge University Press (CUP)

Subject

Nuclear Energy and Engineering,Nuclear and High Energy Physics,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3