Abstract
We describe a graded extension of the usual Hecke algebra: it acts in a graded fashion on the cohomology of an arithmetic group
$\unicode[STIX]{x1D6E4}$
. Under favorable conditions, the cohomology is freely generated in a single degree over this graded Hecke algebra.
From this construction we extract an action of certain
$p$
-adic Galois cohomology groups on
$H^{\ast }(\unicode[STIX]{x1D6E4},\mathbf{Q}_{p})$
, and formulate the central conjecture: the motivic
$\mathbf{Q}$
-lattice inside these Galois cohomology groups preserves
$H^{\ast }(\unicode[STIX]{x1D6E4},\mathbf{Q})$
.
Publisher
Cambridge University Press (CUP)
Subject
Discrete Mathematics and Combinatorics,Geometry and Topology,Mathematical Physics,Statistics and Probability,Algebra and Number Theory,Analysis
Reference37 articles.
1. Cohomology of arithmetic groups and periods of automorphic forms
2. [34] D. Treumann , ‘Smith theory and geometric Hecke algebras’, Math. Ann. 375 (2019), https://arxiv.org/abs/1107.3798.
3. K-th�orie des anneaux d'entiers de corps de nombres et cohomologie �tale
4. [31] Y. Sella , ‘Comparison of sheaf cohomology and singular cohomology’, Preprint, 2016,arXiv:1602.06674.
5. Integral Elements in K-Theory and Products of Modular Curves
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献