Effect of Growth Stage on Cotton Response to a Sublethal Concentration of Dicamba

Author:

Buol John T.,Reynolds Daniel B.ORCID,Dodds Darrin M.,Mills J. Anthony,Nichols Robert L.,Bond Jason A.,Jenkins Johnie N.,DuBien Janice L.

Abstract

AbstractThe introduction of auxin herbicide weed control systems has led to increased occurrence of crop injury in susceptible soybeans and cotton. Off-target exposure to sublethal concentrations of dicamba can occur at varying growth stages, which may affect crop response. Field experiments were conducted in Mississippi in 2014, 2015, and 2016 to characterize cotton response to a sublethal concentration of dicamba equivalent to 1/16X the labeled rate. Weekly applications of dicamba at 35 g ae ha−1were made to separate sets of replicated plots immediately following planting until 14 wk after emergence (WAE). Exposure to dicamba from 1 to 9 WAE resulted in up to 32% visible injury, and exposure from 7 to 10 WAE delayed crop maturity. Exposure from 8 to 10 and 13 WAE led to increased cotton height, while an 18% reduction in machine-harvested yield resulted from exposure at 6 WAE. Cotton exposure at 3 to 9 WAE reduced the seed cotton weight partitioned to position 1 fruiting sites, while exposure at 3 to 6 WAE also reduced yield in position 2 fruiting sites. Exposure at 2, 3, and 5 to 7 WAE increased the percent of yield partitioned to vegetative branches. An increase in percent of yield partitioned to plants with aborted terminals occurred following exposure from 3 to 7 WAE and corresponded with reciprocal decreases in yield partitioned to positional fruiting sites. Minimal effects were observed on fiber quality, except for decreases in fiber length uniformity resulting from exposure at 9 and 10 WAE.

Publisher

Cambridge University Press (CUP)

Subject

Plant Science,Agronomy and Crop Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3