Living morphogenesis of the ventricles and congenital pathology of their component parts

Author:

de la Cruz María V.,Markwald Roger R.,Krug Edward L.,Rumenoff Lila,Gómez Concepción Sánchez,Sadowinski Stanislaw,de Jesús Galicia Teresa,Gómez Fernando,García Marcela Salazar,Guzmán Laura Villavicencio,Angeles Leticia Reyes,Moreno-Rodriguez Ricardo A.

Abstract

Living morphogenetic studies show that each definitive ventricle is constructed from different primitive cardiac segments, and each has its specific anatomical features. These ventricular segments are the atrioventricular junction; the primitive inlet segment, part of the primary heart tube, which initially provides the inlets of each ventricle; the primitive outlet segment, which gives rise to both ventricular outlets; and the apical trabeculated regions of the right and left ventricles which grow from the primary heart tube, respectively. In this review, we describe regional pathology based on the relationship of these primitive ventricular components. We propose that the abnormal morphogenesis of one of these segments gives origin to regional ventricular pathology. For example, abnormal embryogenesis of the atrioventricular canal produces malformations of the atrioventricular junctions, such as double inlet ventricle, absence of one atrioventricular connection, and straddling and overriding atrioventricular valves. Similarly, abnormal morphogenesis of the primitive outlet segment gives rise to malformations of the subarterial region of each ventricle, along with the valves guarding these vessels. The principal anatomical features of these malformations of the ventricular inlets and outlets are described, and their possible morphogenesis is discussed. Due to the fact that the apical trabeculated region of each ventricle arises from a separate primitive segment, each ventricle can be identified according to the pattern of its apical trabeculations. This feature is crucial in the elucidation of complex congenital pathology, such as discordant atrioventricular connections.

Publisher

Cambridge University Press (CUP)

Subject

Cardiology and Cardiovascular Medicine,General Medicine,Pediatrics, Perinatology and Child Health

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Criss-Cross Heart;Pediatric Cardiology;2024

2. Aberrant differentiation of second heart field mesoderm prefigures cellular defects in the outflow tract in response to loss of FGF8;Developmental Biology;2023-07

3. Criss-Cross Heart;Pediatric Cardiology;2023

4. The univentricular heart;Perloff's Clinical Recognition of Congenital Heart Disease;2023

5. A pictorial account of the human embryonic heart between 3.5 and 8 weeks of development;Communications Biology;2022-03-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3