The evolving role of data & safety monitoring boards for real-world clinical trials

Author:

Bunning Bryan J.ORCID,Hedlin Haley,Chen Jonathan H.,Ciolino Jody D.ORCID,Ferstad Johannes Opsahl,Fox Emily,Garcia Ariadna,Go Alan,Johari Ramesh,Lee Justin,Maahs David M.,Mahaffey Kenneth W.,Opsahl-Ong Krista,Perez Marco,Rochford Kaylin,Scheinker David,Spratt HeidiORCID,Turakhia Mintu P.,Desai ManishaORCID

Abstract

Abstract Introduction: Clinical trials provide the “gold standard” evidence for advancing the practice of medicine, even as they evolve to integrate real-world data sources. Modern clinical trials are increasingly incorporating real-world data sources – data not intended for research and often collected in free-living contexts. We refer to trials that incorporate real-world data sources as real-world trials. Such trials may have the potential to enhance the generalizability of findings, facilitate pragmatic study designs, and evaluate real-world effectiveness. However, key differences in the design, conduct, and implementation of real-world vs traditional trials have ramifications in data management that can threaten their desired rigor. Methods: Three examples of real-world trials that leverage different types of data sources – wearables, medical devices, and electronic health records are described. Key insights applicable to all three trials in their relationship to Data and Safety Monitoring Boards (DSMBs) are derived. Results: Insight and recommendations are given on four topic areas: A. Charge of the DSMB; B. Composition of the DSMB; C. Pre-launch Activities; and D. Post-launch Activities. We recommend stronger and additional focus on data integrity. Conclusions: Clinical trials can benefit from incorporating real-world data sources, potentially increasing the generalizability of findings and overall trial scale and efficiency. The data, however, present a level of informatic complexity that relies heavily on a robust data science infrastructure. The nature of monitoring the data and safety must evolve to adapt to new trial scenarios to protect the rigor of clinical trials.

Publisher

Cambridge University Press (CUP)

Subject

General Medicine

Reference26 articles.

1. 17. Food and Drug Administration. Proposed Regulatory Framework for Modifications to Artificial Intelligence/Machine Learning (AI/ML)-Based Software as a Medical Device (SaMD) Action Plan (https://apo.org.au/sites/default/files/resource-files/2019-04/apo-nid228371.pdf). Accessed August 15, 2023.

2. When Can We Rely on Real‐World Evidence to Evaluate New Medical Treatments?

3. Independent data monitoring committees: Preparing a path for the future

4. The challenges of data safety monitoring for a pragmatic study: Lessons from the ADAPTABLE study

5. Lessons learned in the Apple Heart Study and implications for the data management of future digital clinical trials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3