Long-term changes of epiphytic lichen species composition over landscape gradients: an 18 year time series

Author:

LIŠKA Jiří,HERBEN Tomáš

Abstract

Abstract:The study aimed to determine how the response of the epiphytic lichen vegetation to sulphur air pollution is affected by interaction with other factors (distance from pollution sources, habitat, altitude, initial eutrophication of the tree bark). It was based on a series of four successive recordings taken over a period of 18 years with increasing pollution levels and on the same set of 139 solitary trees. Relationships between habitat variables and lichen community composition are assessed using canonical correspondence analysis. The data set comprised 69 lichen species. Ordination of initial species composition on trees revealed two major gradients: eutrophication and acidity.The species composition significantly changed with time, with a general decrease of the total number of lichen species per tree. In general, species sensitive to air pollution decreased, while tolerant species increased in number. Change over time differed depending on the position of the tree within the landscape (relative to one major source of pollution, the town of Tábor, whereas the distance to the other source, Sezimovo Ústí, was not significant) and on the initial species composition found on the tree. Trees under the effect of eutrophication changed their species composition less, indicating that the effect of eutrophication (mainly increased bark pH) may ameliorate the effects of air pollution; a local effect of eutrophication also seems to play an important role. Distance to pollution sources had only a small impact on the rate of change and perhaps other local conditions (sheltered or humid position, altitude) play a role in this interaction. There was a decrease of the overall heterogeneity of the data set over time. This means that the gradients in species composition attributable to these variables became less important over time. Therefore, one of the effects of air pollution is also a general homogenization of the lichen vegetation of the solitary trees.

Publisher

Cambridge University Press (CUP)

Subject

Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3