Rain, dew, and humid air as drivers of morphology, function and spatial distribution in epiphytic lichens

Author:

GAUSLAA Yngvar

Abstract

AbstractThis review is a first attempt to combine and compare spatial distribution of the three main water sources, rain, dew and humid air, with water-related traits of mainly epiphytic macrolichens in a conceptual and functional model. By comparing climatic and lichenological knowledge, various effects of dewfall, rainfall and humid air on epiphytic lichen morphology and function are analyzed to search for traits and patterns. Although dew, rain and humid air cause lichen hydration and activate photosynthesis, these atmospheric hydration sources influence and shape lichens differently. In order to visualize hydration patterns, dew, rain and humid air are shown as corners in a triangle exhibiting the various combinations of these hydration sources. The sources of hydration vary on temporal scales, and on the spatial scales: regional, landscape, stand and tree. Lichen growth form, photobiont type, water-holding capacity (WHC) and suprasaturation depression show clear patterns within the hydration triangle. For most lichen species, one average pre-dawn dewfall approximately fills their average internal WHC. This suggests that lichens are optimally designed to utilize dew rather than rain, consistent with literature emphasizing dew as a driver for annual C-assimilation in chlorolichens. However, rain is needed to fill their external WHC and to fully hydrate most cyanolichens. Including the sources of hydration and internal lichen variables, such as water-holding capacity, will improve modelling of local and global future scenarios on lichen distribution and biomass production.

Publisher

Cambridge University Press (CUP)

Subject

Ecology, Evolution, Behavior and Systematics

Reference114 articles.

1. Utbredningstyper bland Nordiska barrträdslavar;Ahlner;Acta Phytogeographica Suecica,1948

2. Short Communication: Leaf trait relationships in Australian plant species

3. The threatened macrolichens of Norway - 1995;Tønsberg;Sommerfeltia,1996

4. Water status related photosynthesis and carbon isotope discrimination in species of the lichen genusPseudocyphellaria with green or blue-green photobionts and in photosymbiodemes

5. Large-scale survey of the distribution and ecology of common epiphytic lichens on Pinus sylvestris in Norway;Bruteig;Annales Botanici Fennici,1993

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3