Numerical solution of unsteady boundary-layer separation in supersonic flow: upstream moving wall

Author:

Yapalparvi R.,Van Dommelen L. L.

Abstract

AbstractThis paper is an extension of work on separation from a downstream moving wall by Ruban et al. (J. Fluid. Mech., vol. 678, 2011, pp. 124–155) and is in particular concerned with the boundary-layer separation in unsteady two-dimensional laminar supersonic flow. In a frame attached to the wall, the separation is assumed to be provoked by a shock wave impinging upon the boundary layer at a point that moves downstream with a non-dimensional speed which is assumed to be of order ${\mathit{Re}}^{\ensuremath{-} 1/ 8} $ where $\mathit{Re}$ is the Reynolds number. In the coordinate system of the shock however, the wall moves upstream. The strength of the shock and its speed are allowed to vary with time on a characteristic time scale that is large compared to ${\mathit{Re}}^{\ensuremath{-} 1/ 4} $. The ‘triple-deck’ model is used to describe the interaction process. The governing equations of the interaction problem can be derived from the Navier–Stokes equations in the limit $\mathit{Re}\ensuremath{\rightarrow} \infty $. The numerical solutions are obtained using a combination of finite differences along the streamwise direction and Chebyshev collocation along the normal direction in conjunction with Newton linearization. In the present study with the wall moving upstream, the evidence is inconclusive regarding the so-called ‘Moore–Rott–Sears’ criterion being satisfied. Instead it is observed that the pressure rise from its initial value is very slow and that a recirculation region forms, the upstream part of which is wedge-shaped, as also observed in turbulent marginal separation for large values of angle of attack.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Singularity Formation in an Incompressible Boundary Layer on an Upstream Moving Wall under Given External Pressure;Computational Mathematics and Mathematical Physics;2023-12

2. Singularity Formation in an Incompressible Boundary Layer on an Upstream Moving Wall under Given External Pressure;Журнал вычислительной математики и математической физики;2023-12-01

3. A new fluid dynamical model coupling horizontal heat with an application to interior separations;ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik;2022-07-07

4. Incompressible Boundary Layer with Counterflows at a Given Pressure Gradient;Computational Mathematics and Mathematical Physics;2022-06

5. Investigation of shock wave boundary layer interaction over the moving flat plate;AIP Conference Proceedings;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3