On the global nonlinear stability of a near-critical swirling flow in a long finite-length pipe and the path to vortex breakdown

Author:

Rusak Z.,Wang S.,Xu L.,Taylor S.

Abstract

AbstractThe dynamics of a perturbed incompressible, inviscid, axisymmetric, near-critical swirling flow in a long, finite-length, straight, circular pipe is studied through a weakly nonlinear analysis. The flow is subjected to non-periodic inlet and outlet conditions. The long-wave approach involves a rescaling of the axial distance and time. It results in a separation of the perturbation’s structure into a critical standing wave in the radial direction and an evolving wave in the axial direction, that is described by a nonlinear model problem. The approach is first validated by establishing the bifurcation of non-columnar states from the critical swirl and the linear stability modes of these states. Examples of the flow dynamics at various near-critical swirl levels in response to different initial perturbations demonstrate the important role of the nonlinear steepening terms in perturbation dynamics. The computed dynamics shows quantitative agreement with results from numerical simulations that are based on the axisymmetric Euler equations for various swirl levels and as long as perturbations are small, thereby verifying the accuracy of each computation and capturing the essence of flow dynamics. Results demonstrate the various stages of the flow dynamics, specifically during the transition to vortex breakdown states. They reveal the evolution of faster-than-exponential and shape-changing modes as perturbations grow into the vortex breakdown process. These explosive modes provide the sudden and abrupt nature of the vortex breakdown phenomenon. Further analysis of the model problem shows the important role of the nonlinear evolution of perturbations and its relevance to the transfer of the perturbation’s kinetic energy between the boundaries and flow bulk, the evolution of perturbations in practical concentrated vortex flows, and the design of control methods of vortex flows. A robust feedback control method to stabilize a solid-body rotation flow in a pipe at a wide range of swirl levels above critical is developed. The applicability of this method to stabilizing medium and small core-size vortices is also discussed.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3