Boundary-element method for the prediction of performance of flapping foils with leading-edge separation

Author:

Pan Yulin,Dong Xiaoxia,Zhu Qiang,Yue Dick K. P.

Abstract

AbstractA numerical model based on a boundary-element method is developed to predict the performance of flapping foils for the general cases where vorticities are shed near the leading edge as well as from the trailing edge. The shed vorticities are modelled as desingularized thin shear layers which propagate with the local flow velocity. Special treatments are developed to model the unsteady and alternating leading-edge separation (LES), which is a main element of difficulty for theoretical and numerical analyses of general flapping foils. The present method is compared with existing experiments where it is shown that the inclusion of LES significantly improves the prediction of thrust and efficiency, obtaining excellent agreement with measurements over a broad range of flapping frequencies (Strouhal number) and motion amplitudes (maximum angle of attack). It is found that the neglect of LES leads to substantial over-prediction of the thrust (and efficiency). The effects of LES on thrust generation in terms of the circulation around the foil, the steady and unsteady thrust components, and the vortex-induced pressure on the foil are elucidated. The efficiency and robustness of the method render it suitable for design optimization which generally requires large numbers of performance evaluations. To illustrate this, we present a sample problem of designing the flapping motion, with the inclusion of higher harmonic components, to maximize the efficiency under specified thrust. When optimal higher harmonic motions are included, the performance of the flapping foil is appreciably improved, mitigating the adverse effects of LES vortex on the performance.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3