Non-modal stability in sliding Couette flow

Author:

Liu R.,Liu Q. S.

Abstract

AbstractThe problem of an incompressible flow between two coaxial cylinders with radii$a$and$b$subjected to a sliding motion of the inner cylinder in the axial direction is considered. The energy stability and the non-modal stability have been investigated for both axisymmetric and non-axisymmetric disturbances. For the non-modal stability, we focus on two problems: response to external excitations and response to initial conditions. The former is studied by examining the$\epsilon $-pseudospectrum, and the latter by examining the energy growth function$G(t)$. Unlike the results of the modal analysis in which the stability of sliding Couette flow is determined by axisymmetric disturbances, the energy analysis shows that a non-axisymmetric disturbance has a critical energy Reynolds number for all radius ratios$\eta = a/ b$. The results for non-modal stability show that rather large transient growth occurs over a wide range of azimuthal wavenumber$n$and streamwise wavenumber$\ensuremath{\alpha} $, even though the Reynolds number is far below its critical value. For the problem of response to external excitations, the response is sensitive to low-frequency external excitations. For all values of the radius ratio, the maximum response is achieved by non-axisymmetric and streamwise-independent disturbances when the frequency of external forcing$\omega = 0$. For the problem of response to initial conditions, the optimal disturbance is in the form of helical streaks at low Reynolds numbers. With the increase of$\mathit{Re}$, the optimal disturbance becomes very close to straight streaks. For each$\eta $, the maximum energy growth of streamwise-independent disturbances is of the order of${\mathit{Re}}^{2} $, and the optimal time is of the order of$\mathit{Re}$. This relation is qualitatively similar to that for plane Couette flow, plane Poiseuille flow and pipe Poiseuille flow. Direct numerical simulations are applied to investigate the transition of the streamwise vortex (SV) scenario at$\mathit{Re}= 1000$and 1500 for various$\eta $. The initial disturbances are the optimal streamwise vortices predicted by the non-modal analysis. We studied the streak breakdown phase of the SV scenarios by examining the instability of streaks. Moreover, we have investigated the sustainment of the energy of disturbances in the SV scenario.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3