Lagrangian and spectral analysis of the forced flow past a circular cylinder using pulsed tangential jets

Author:

Jardin T.,Bury Y.

Abstract

AbstractWe numerically investigate the influence of pulsed tangential jets on the flow past a circular cylinder. To this end a spectral-Lagrangian dual approach is used on the basis of time-series data. The analysis reveals that the flow response to unsteady forcing is driven by strong interactions between shear layers and pulsed jets. The latter preferentially lead to either the lock-on regime or the quasi-steady vortex feeding regime whether the excitation frequency is of the order of, or significantly greater than, the frequency of the natural instability. The intensity of the wake vortices is mainly influenced by the momentum coefficient through the introduction of opposite-sign vorticity in the shear layers. This feature is emphasized using a modal-based time reconstruction, i.e. by reconstructing the flow field upon a specific harmonic spectrum associated with a characteristic time scale. The quasi-steady regime exhibits small-scale counter-rotating vortices that circumscribe the separated region. In the lock-on regime, atypical wake patterns such as 2P or $\mathrm{P} + \mathrm{S} $ can be observed, depending on the forcing frequency and the momentum coefficient, highlighting remarkable analogies with oscillating cylinders.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference23 articles.

1. Spectral analysis of nonlinear flows

2. 15. Schmid P. J. 2009 Dynamic mode decomposition of experimental data. 8th International Symposium on Particle Image Velocimetry, Melbourne, Victoria, Australia.

3. Vortex formation in the wake of an oscillating cylinder

4. SYNTHETIC JETS

5. The mechanics of the formation region of vortices behind bluff bodies

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3