Abstract
AbstractWe numerically investigate the influence of pulsed tangential jets on the flow past a circular cylinder. To this end a spectral-Lagrangian dual approach is used on the basis of time-series data. The analysis reveals that the flow response to unsteady forcing is driven by strong interactions between shear layers and pulsed jets. The latter preferentially lead to either the lock-on regime or the quasi-steady vortex feeding regime whether the excitation frequency is of the order of, or significantly greater than, the frequency of the natural instability. The intensity of the wake vortices is mainly influenced by the momentum coefficient through the introduction of opposite-sign vorticity in the shear layers. This feature is emphasized using a modal-based time reconstruction, i.e. by reconstructing the flow field upon a specific harmonic spectrum associated with a characteristic time scale. The quasi-steady regime exhibits small-scale counter-rotating vortices that circumscribe the separated region. In the lock-on regime, atypical wake patterns such as 2P or $\mathrm{P} + \mathrm{S} $ can be observed, depending on the forcing frequency and the momentum coefficient, highlighting remarkable analogies with oscillating cylinders.
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Reference23 articles.
1. Spectral analysis of nonlinear flows
2. 15. Schmid P. J. 2009 Dynamic mode decomposition of experimental data. 8th International Symposium on Particle Image Velocimetry, Melbourne, Victoria, Australia.
3. Vortex formation in the wake of an oscillating cylinder
4. SYNTHETIC JETS
5. The mechanics of the formation region of vortices behind bluff bodies
Cited by
33 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献