Two-way coupled stochastic model for dispersion of inertial particles in turbulence

Author:

Pai Madhusudan G.,Subramaniam Shankar

Abstract

AbstractTurbulent two-phase flows are characterized by the presence of multiple time and length scales. Of particular interest in flows with non-negligible interphase momentum coupling are the time scales associated with interphase turbulent kinetic energy transfer (TKE) and inertial particle dispersion. Point-particle direct numerical simulations (DNS) of homogeneous turbulent flows laden with sub-Kolmogorov size particles report that the time scale associated with the interphase TKE transfer behaves differently with Stokes number than the time scale associated with particle dispersion. Here, the Stokes number is defined as the ratio of the particle momentum response time scale to the Kolmogorov time scale of turbulence. In this study, we propose a two-way coupled stochastic model (CSM), which is a system of two coupled Langevin equations for the fluctuating velocities in each phase. The basis for the model is the Eulerian–Eulerian probability density function formalism for two-phase flows that was established in Pai & Subramaniam (J. Fluid Mech., vol. 628, 2009, pp. 181–228). This new model possesses the unique capability ofsimultaneouslycapturing the disparate dependence of the time scales associated with interphase TKE transfer and particle dispersion on Stokes number. This is ascertained by comparing predicted trends of statistics of turbulent kinetic energy and particle dispersion in both phases from CSM, for varying Stokes number and mass loading, with point-particle DNS datasets of homogeneous particle-laden flows.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. High-order Lagrangian algorithms for Liouville models of particle-laden flows;Journal of Computational Physics;2024-10

2. Liouville models of particle-laden flow;Physics of Fluids;2024-06-01

3. SPARSE–R: A point-cloud tracer with random forcing;International Journal of Multiphase Flow;2024-01

4. Stochastic models;Modeling Approaches and Computational Methods for Particle-Laden Turbulent Flows;2023

5. Introduction;Modeling Approaches and Computational Methods for Particle-Laden Turbulent Flows;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3