Minimum power consumption for drag reduction on a circular cylinder by tangential surface motion

Author:

Shukla Ratnesh K.,Arakeri Jaywant H.

Abstract

AbstractWe investigate the effect of a prescribed tangential velocity on the drag force on a circular cylinder in a spanwise uniform cross flow. Using a combination of theoretical and numerical techniques we make an attempt at determining the optimal tangential velocity profiles which will reduce the drag force acting on the cylindrical body while minimizing the net power consumption characterized through a non-dimensional power loss coefficient (${C}_{\mathit{PL}} $). A striking conclusion of our analysis is that the tangential velocity associated with the potential flow, which completely suppresses the drag force, is not optimal for both small and large, but finite Reynolds number. When inertial effects are negligible ($\mathit{Re}\ll 1$), theoretical analysis based on two-dimensional Oseen equations gives us the optimal tangential velocity profile which leads to energetically efficient drag reduction. Furthermore, in the limit of zero Reynolds number ($\mathit{Re}\ensuremath{\rightarrow} 0$), minimum power loss is achieved for a tangential velocity profile corresponding to a shear-free perfect slip boundary. At finite $\mathit{Re}$, results from numerical simulations indicate that perfect slip is not optimum and a further reduction in drag can be achieved for reduced power consumption. A gradual increase in the strength of a tangential velocity which involves only the first reflectionally symmetric mode leads to a monotonic reduction in drag and eventual thrust production. Simulations reveal the existence of an optimal strength for which the power consumption attains a minima. At a Reynolds number of 100, minimum value of the power loss coefficient (${C}_{\mathit{PL}} = 0. 37$) is obtained when the maximum in tangential surface velocity is about one and a half times the free stream uniform velocity corresponding to a percentage drag reduction of approximately 77 %; ${C}_{\mathit{PL}} = 0. 42$ and $0. 50$ for perfect slip and potential flow cases, respectively. Our results suggest that potential flow tangential velocity enables energetically efficient propulsion at all Reynolds numbers but optimal drag reduction only for $\mathit{Re}\ensuremath{\rightarrow} \infty $. The two-dimensional strategy of reducing drag while minimizing net power consumption is shown to be effective in three dimensions via numerical simulation of flow past an infinite circular cylinder at a Reynolds number of 300. Finally a strategy of reducing drag, suitable for practical implementation and amenable to experimental testing, through piecewise constant tangential velocities distributed along the cylinder periphery is proposed and analysed.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3