The ‘zoo’ of secondary instabilities precursory to stratified shear flow transition. Part 1 Shear aligned convection, pairing, and braid instabilities

Author:

Mashayek A.,Peltier W. R.

Abstract

AbstractWe study the competition between various secondary instabilities that co-exist in a preturbulent stratified parallel flow subject to Kelvin–Helmholtz instability. In particular, we investigate whether a secondary braid instability might emerge prior to the overturning of the statically unstable regions that develop in the cores of the primary Kelvin–Helmholtz billows. We identify two groups of instabilities on the braid. One group is a shear instability which extracts its energy from the background shear and is suppressed by the straining contribution of the background flow. The other group, which seems to have no precedent in the literature, includes phase-locked modes which grow at the stagnation point on the braid and are almost entirely driven by the straining contributions of the background flow. For the latter group, the braid shear has a negative influence on the growth rate. Our analysis demonstrates that the probability of finite-amplitude growth of both braid instabilities is enhanced with increasing Reynolds number and Richardson number. We also show that the possibility of emergence of braid instabilities decreases with the Prandtl number for the shear modes and increases for the stagnation point instabilities. Through detailed non-separable linear stability analysis, we show that both braid instabilities are fundamentally three dimensional with the shear modes being of small wavenumbers and the stagnation point modes dominating at large wavenumber.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 80 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3