Flow of power-law fluids in fixed beds of cylinders or spheres

Author:

Singh John P.,Padhy Sourav,Shaqfeh Eric S. G.,Koch Donald L.

Abstract

AbstractAn ensemble average of the equations of motion for a Newtonian fluid over particle configurations in a dilute fixed bed of spheres or cylinders yields Brinkman’s equations of motion, where the disturbance velocity produced by a test particle is influenced by the Newtonian fluid stress and a body force representing the linear drag on the surrounding particles. We consider a similar analysis for a power-law fluid where the stress $\boldsymbol{\tau} $ is related to the rate of strain $ \mathbisf{e} $ by $\boldsymbol{\tau} = 2m \mathop{ \vert \mathbisf{e} \vert }\nolimits ^{n\ensuremath{-} 1} \mathbisf{e} $, where $m$ and $n$ are constants. In this case, the ensemble-averaged momentum equation includes a body force resulting from the nonlinear drag exerted on the surrounding particles, a power-law stress associated with the disturbance velocity of the test particle, and a stress term that is linear with respect to the test particle’s disturbance velocity. The latter term results from the interaction of the test particle’s velocity disturbance with the random straining motions produced by the neighbouring particles and is important only in shear-thickening fluids where the velocity disturbances of the particles are long-ranged. The solutions to these equations using scaling analyses for dilute beds and numerical simulations using the finite element method are presented. We show that the drag force acting on a particle in a fixed bed can be written as a function of a particle-concentration-dependent length scale at which the fluid velocity disturbance produced by a particle is modified by hydrodynamic interactions with its neighbours. This is also true of the drag on a particle in a periodic array where the length scale is the lattice spacing. The effects of particle interactions on the drag in dilute arrays (periodic or random) of cylinders and spheres in shear-thickening fluids is dramatic, where it arrests the algebraic growth of the disturbance velocity with radial position when $n\geq 1$ for cylinders and $n\geq 2$ for spheres. For concentrated random arrays of particles, we adopt an effective medium theory in which the drag force per unit volume in the medium surrounding a test particle is assumed to be proportional to the local volume fraction of the neighbouring particles, which is derived from the hard-particle packing. The predictions of the averaged equations of motion are validated by comparison with simulations of randomly distributed hydrodynamically interacting cylinders.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3