Global vorticity shedding for a shrinking cylinder

Author:

Weymouth G. D.,Triantafyllou M. S.

Abstract

AbstractWe study numerically the viscous flow around a steadily moving two-dimensional cylinder undergoing a rapid reduction in its diameter as a model problem for force production through shape change which is encountered in the locomotion of certain animals. We consider first the case of a rapidly collapsing circular cylinder in steady translation, starting from an original diameter and reaching a final, smaller diameter under prescribed kinematics. We show that the difference in added mass energy is recovered by the body, and the boundary layer vorticity is reduced through annihilation with opposite-sign vorticity generated during the reduction phase. Next we consider a steadily moving circular cylinder which undergoes rapid but orderly melting, resulting in the same reduction of its diameter but which exhibits radically different flow patterns compared to the collapsing cylinder. The original vorticity in the boundary layer is shed instantaneously and globally in the fluid at the start of the melting phase, and then rapidly rolls up to form a pair of strong vortices, which contain the energy difference between the original and final cylinder states. The formation of the vortices in the melting cylinder takes less than a third of the time required by a rigid translating cylinder to form such vortices.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3