Stokes flow singularity at the junction between impermeable and porous walls

Author:

Nitsche Ludwig C.,Parthasarathi Prashanth

Abstract

AbstractFor two-dimensional, creeping flow in a half-plane, we consider the singularity that arises at an abrupt transition in permeability from zero to a finite value along the wall, where the pressure is coupled to the seepage flux by Darcy’s law. This problem represents the junction between the impermeable wall of the inflow section and the porous membrane further downstream in a spiral-wound desalination module. On a macroscopic, outer length scale the singularity appears like a jump discontinuity in normal velocity, characterized by a non-integrable $1/ r$ divergence of the pressure. This far-field solution is imposed as the boundary condition along a semicircular arc of dimensionless radius 30 (referred to the microscopic, inner length scale). A preliminary numerical solution (using a least-squares variant of the method of fundamental solutions) indicates a continuous normal velocity along the wall coupled with a weaker $1/ \sqrt{r} $ singularity in the pressure. However, inconsistencies in the numerically imposed outer boundary condition indicate a very slow radial decay. We undertake asymptotic analysis to: (i) understand the radial decay behaviour; and (ii) find a more accurate far-field solution to impose as the outer boundary condition. Similarity solutions (involving a stream function that varies like some power of $r$) are insufficient to satisfy all boundary conditions along the wall, so we generalize these by introducing linear and quadratic terms in $\log r$. By iterating on the wall boundary conditions (analogous to the method of reflections), the outer asymptotic series is developed through second order. We then use a hybrid computational scheme in which the numerics are iteratively patched to the outer asymptotics, thereby determining two free coefficients in the latter. We also derive an inner asymptotic series and fit its free coefficient to the numerics at $r= 0. 01$. This enables evaluation of the singular flow field in the limit as $r\ensuremath{\rightarrow} 0$. Finally, a uniformly valid fit is obtained with analytical formulas. The singular flow field for a solid–porous abutment and the general Stokes flow solutions obtained in the asymptotic analysis are programmed in Fortran for future use as local basis functions in computational schemes. Numerics are required for the intermediate-$r$ regime because the inner and outer asymptotic expansions do not extend far enough toward each other to enable rigorous asymptotic matching. The logarithmic correction terms explain why the leading far-field solution (used in the preliminary numerics) was insufficient even at very large distances.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3