The universal aspect ratio of vortices in rotating stratified flows: experiments and observations

Author:

Aubert Oriane,Le Bars Michael,Le Gal Patrice,Marcus Philip S.

Abstract

AbstractWe validate a new law for the aspect ratio $\ensuremath{\alpha} = H/ L$ of vortices in a rotating, stratified flow, where $H$ and $L$ are the vertical half-height and horizontal length scale of the vortices. The aspect ratio depends not only on the Coriolis parameter $f$ and buoyancy (or Brunt–Väisälä) frequency $\bar {N} $ of the background flow, but also on the buoyancy frequency ${N}_{c} $ within the vortex and on the Rossby number $\mathit{Ro}$ of the vortex, such that $\ensuremath{\alpha} = f \mathop{ [\mathit{Ro}(1+ \mathit{Ro})/ ({ N}_{c}^{2} \ensuremath{-} {\bar {N} }^{2} )] }\nolimits ^{1/ 2} $. This law for $\ensuremath{\alpha} $ is obeyed precisely by the exact equilibrium solution of the inviscid Boussinesq equations that we show to be a useful model of our laboratory vortices. The law is valid for both cyclones and anticyclones. Our anticyclones are generated by injecting fluid into a rotating tank filled with linearly stratified salt water. In one set of experiments, the vortices viscously decay while obeying our law for $\ensuremath{\alpha} $, which decreases over time. In a second set of experiments, the vortices are sustained by a slow continuous injection. They evolve more slowly and have larger $\vert \mathit{Ro}\vert $ while still obeying our law for $\ensuremath{\alpha} $. The law for $\ensuremath{\alpha} $ is not only validated by our experiments, but is also shown to be consistent with observations of the aspect ratios of Atlantic meddies and Jupiter’s Great Red Spot and Oval BA. The relationship for $\ensuremath{\alpha} $ is derived and examined numerically in a companion paper by Hassanzadeh, Marcus & Le Gal (J. Fluid Mech., vol. 706, 2012, pp. 46–57).

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Inertia-gravity waves in geophysical vortices;Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences;2024-03

2. Dynamics of diabatically forced anticyclonic plumes in the stratosphere;Quarterly Journal of the Royal Meteorological Society;2024-02-20

3. The Dynamics of Jupiter's and Saturn's Weather Layers: A Synthesis After Cassini and Juno;Annual Review of Fluid Mechanics;2024-01-19

4. Relationship between global ocean mixing and coherent mesoscale eddies;Deep Sea Research Part I: Oceanographic Research Papers;2023-07

5. Microwave observations reveal the deep extent and structure of Jupiter’s atmospheric vortices;Science;2021-11-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3