On the flow field induced by a hovering rotor or a static jet

Author:

Spalart Philippe R.

Abstract

AbstractThe flow in the far field of an isolated static momentum source is considered, taking into account the entrainment of fluid by the turbulent jet which develops far downstream irrespective of the type of device. The result is a simple analytical model for the irrotational region, which depends only on the thrust applied. This equation is implied by Stewart (J. Fluid Mech., vol. 1, 1956, pp. 593–606) for a jet. For a rotor, the model is radically different from the classical one derived from an actuator disk without turbulence or mixing in the wake, which led to a sink flow in the far field. The velocities decay like $1/ r$ rather than $1/ {r}^{2} $, where $r$ is the radius, and are everywhere directed in the direction opposite to the thrust, rather than pointing towards the origin. The momentum source drives a co-flow which converges towards the turbulent region, thus supplying the entrained fluid. This flow pattern supports the assumption that the fluid surrounding the turbulent region is irrotational, better than the sink-flow model would. The model depends only on one empirical constant, a measure of the entrainment in a fully developed jet, for which a range of values is determined from the experimental literature. If the rotor is climbing, the sink flow is recovered; however, the limit of that equation as the climb velocity tends to zero, leading to hover, is singular. For both jets and rotors, this model used in a boundary condition should eliminate extraneous parameters and reduce the computational cost of numerical simulations, and may guide the design of chambers used for experiments, following Ricou & Spalding (J. Fluid Mech., vol. 11, 1960, pp. 21–32).

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference10 articles.

1. Entrainment Velocity in an Axisymmetric Turbulent Jet

2. On the simple actuator disk

3. 3. Dziubinski A. & Stalewski W. 2007 Vortex ring state simulation using actuator disk. In Proc. 21st Eur. Conf. Mod. Sim., ECMS 2007.

4. LES-based evaluation of a microjet noise reduction concept in static and flight conditions

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3