Streamwise dispersion and mixing in quasi-two-dimensional steady turbulent jets

Author:

Landel Julien R.,Caulfield C. P.,Woods Andrew W.

Abstract

AbstractWe investigate experimentally and theoretically the streamwise transport and dispersion properties of steady quasi-two-dimensional plane turbulent jets discharged vertically from a slot of width $d$ into a fluid confined between two relatively close rigid boundaries with gap $W\ensuremath{\sim} O(d)$. We model the evolution in time and space of the concentration of passive tracers released in these jets using a one-dimensional time-dependent effective advection–diffusion equation. We make a mixing length hypothesis to model the streamwise turbulent eddy diffusivity such that it scales like $b(z){ \overline{w} }_{m} (z)$, where $z$ is the streamwise coordinate, $b$ is the jet width, ${ \overline{w} }_{m} $ is the maximum time-averaged vertical velocity. Under these assumptions, the effective advection–diffusion equation for $\phi (z, t)$, the horizontal integral of the ensemble-averaged concentration, is of the form ${\partial }_{t} \phi + {K}_{a} {\text{} {M}_{0} \text{} }^{1/ 2} {\partial }_{z} \left(\phi / {z}^{1/ 2} \right)= {K}_{d} {\text{} {M}_{0} \text{} }^{1/ 2} {\partial }_{z} \left({z}^{1/ 2} {\partial }_{z} \phi \right)$, where $t$ is time, ${K}_{a} $ (the advection parameter) and ${K}_{d} $ (the dispersion parameter) are empirical dimensionless parameters which quantify the importance of advection and dispersion, respectively, and ${M}_{0} $ is the source momentum flux. We find analytical solutions to this equation for $\phi $ in the cases of a constant-flux release and an instantaneous finite-volume release. We also give an integral formulation for the more general case of a time-dependent release, which we solve analytically when tracers are released at a constant flux over a finite period of time. From our experimental results, whose concentration distributions agree with the model, we find that ${K}_{a} = 1. 65\pm 0. 10$ and ${K}_{d} = 0. 09\pm 0. 02$, for both finite-volume releases and constant-flux releases using either dye or virtual passive tracers. The experiments also show that streamwise dispersion increases in time as ${t}^{2/ 3} $. As a result, in the case of finite-volume releases more than 50 % of the total volume of tracers is transported ahead of the purely advective front (i.e. the front location of the tracer distribution if all dispersion mechanisms are ignored and considering a ‘top-hat’ mean velocity profile in the jet); and in the case of constant-flux releases, at each instant in time, approximately 10 % of the total volume of tracers is transported ahead of the advective front.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Mixing and solvent exchange near the turbulent/non-turbulent interface in a quasi-2D jet;International Journal of Multiphase Flow;2023-12

2. Scalar transport and nucleation in quasi-two-dimensional starting jets and puffs;International Journal of Multiphase Flow;2023-11

3. On the role of the viscosity ratio on buoyant miscible jet flows;Environmental Fluid Mechanics;2021-10-18

4. The concave-wall jet characteristics in vertical cylinder separator with inlet baffle component;Chinese Journal of Chemical Engineering;2021-06

5. Mixing layer and turbulent jet flow in a Hele–Shaw cell;International Journal of Non-Linear Mechanics;2020-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3