Author:
Mellibovsky F.,Eckhardt B.
Abstract
AbstractWe study numerically a succession of transitions in pipe Poiseuille flow that lead from simple travelling waves to waves with chaotic time-dependence. The waves at the origin of the bifurcation cascade are twofold azimuthally periodic, shift–reflect symmetric, and have a non-dimensional axial wavelength of $1. 927$ diameters. As the Reynolds number is increased, successive transitions result in a wide range of time-dependent solutions that include spiralling, modulated travelling, modulated spiralling, doubly modulated spiralling and mildly chaotic waves. Numerical evidence suggests that the latter spring from heteroclinic tangles of the stable and unstable invariant manifolds of two shift–reflect symmetric, modulated travelling waves. The chaotic set thus produced is confined to a limited range of Reynolds numbers, bounded by the occurrence of manifold tangencies. The subspace of discrete symmetry to which the states studied here belong makes many of the bifurcation and path-following investigations presented readily accessible. However, we expect that most of the phenomenology carries over to the full state space, thus suggesting a mechanism for the formation and break-up of invariant states that can give rise to chaotic dynamics.
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
31 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献