Abstract
AbstractA new formulation is presented of the nonlinear loads exerted on floating bodies by steep irregular surface waves. The forces and moments are expressed in terms of the time derivative of the fluid impulse which circumvents the time-consuming computation of the temporal and spatial derivatives in Bernoulli’s equation. The nonlinear hydrostatic force on a floating body is shown to point vertically upwards and the nonlinear Froude–Krylov force and moment are derived as the time derivative of an impulse that involves the time derivative of a simple integral of the ambient velocity potential over the time-dependent body wetted surface. The nonlinear radiation and diffraction forces and moments are expressed as time derivatives of two impulses, a body impulse and a free surface impulse that represents higher-order wave loads acting along the body waterline. Numerical results are presented illustrating the accuracy of the new force expressions. Applications discussed include the nonlinear seakeeping of ships and offshore platforms and the extreme wave loads and responses of offshore wind turbines.
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献