Analytical linear theory for the shock and re-shock of isotropic density inhomogeneities

Author:

Huete C.,Wouchuk J. G.,Canaud B.,Velikovich A. L.

Abstract

AbstractWe present an analytical model that describes the linear interaction of two successive shocks launched into a non-uniform density field. The re-shock problem is important in different fields, inertial confinement fusion among them, where several shocks are needed to compress the non-uniform target. At first, we present a linear theory model that studies the interaction of two successive shocks with a single-mode density perturbation field ahead of the first shock. The second shock is launched after the sonic waves emitted by the first shock wave have vanished. Therefore, in the case considered in this work, the second shock only interacts with the entropic and vortical perturbations left by the first shock front. The velocity, vorticity and density fields are later obtained in the space behind the second shock. With the results of the single-mode theory, the interaction with a full spectrum of random-isotropic density perturbations is considered by decomposing it into Fourier modes. The model describes in detail how the second shock wave modifies the turbulent field generated by the first shock wave. Averages of the downstream quantities (kinetic energy, vorticity, acoustic flux and density) are easily obtained either for two-dimensional or three-dimensional upstream isotropic spectra. The asymptotic limits of very strong shocks are discussed. The study shown here is an extension of previous works, where the interaction of a planar shock wave with random isotropic vorticity/entropy/acoustic spectra were studied independently. It is also a preliminary step towards the understanding of the re-shock of a fully turbulent flow, where all three of the modes, vortical, entropic and acoustic, might be present.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3