Linear stability of magnetohydrodynamic flow in a perfectly conducting rectangular duct

Author:

Priede Jānis,Aleksandrova Svetlana,Molokov Sergei

Abstract

AbstractWe analyse numerically the linear stability of a liquid-metal flow in a rectangular duct with perfectly electrically conducting walls subject to a uniform transverse magnetic field. A non-standard three-dimensional vector stream-function/vorticity formulation is used with a Chebyshev collocation method to solve the eigenvalue problem for small-amplitude perturbations. A relatively weak magnetic field is found to render the flow linearly unstable as two weak jets appear close to the centre of the duct at the Hartmann number $\mathit{Ha}\approx 9. 6. $ In a sufficiently strong magnetic field, the instability following the jets becomes confined in the layers of characteristic thickness $\delta \ensuremath{\sim} {\mathit{Ha}}^{\ensuremath{-} 1/ 2} $ located at the walls parallel to the magnetic field. In this case the instability is determined by $\delta , $ which results in both the critical Reynolds number and wavenumber scaling as ${\ensuremath{\sim} }{\delta }^{\ensuremath{-} 1} . $ Instability modes can have one of the four different symmetry combinations along and across the magnetic field. The most unstable is a pair of modes with an even distribution of vorticity along the magnetic field. These two modes represent strongly non-uniform vortices aligned with the magnetic field, which rotate either in the same or opposite senses across the magnetic field. The former enhance while the latter weaken one another provided that the magnetic field is not too strong or the walls parallel to the field are not too far apart. In a strong magnetic field, when the vortices at the opposite walls are well separated by the core flow, the critical Reynolds number and wavenumber for both of these instability modes are the same: ${\mathit{Re}}_{c} \approx 642{\mathit{Ha}}^{1/ 2} + 8. 9\ensuremath{\times} 1{0}^{3} {\mathit{Ha}}^{\ensuremath{-} 1/ 2} $ and ${k}_{c} \approx 0. 477{\mathit{Ha}}^{1/ 2} . $ The other pair of modes, which differs from the previous one by an odd distribution of vorticity along the magnetic field, is more stable with an approximately four times higher critical Reynolds number.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3