Stability of rotating non-smooth complex fluids

Author:

Sharma Ishan

Abstract

AbstractWe extend the classical energy criterion for stability, the Lagrange–Dirichlet theorem, to rotating non-smooth complex fluids. The stability test so developed is very general and may be applied to most rotating non-smooth systems where the spectral method is inapplicable. In the process, we rigourously define an appropriate coordinate system in which to investigate stability – this happens to be the well-known Tisserand mean axis of the body – as well as systematically distinguish perturbations that introduce angular momentum and/or jumps in the stress state from those that do not. With a view to future application to planetary objects, we specialize the stability test to freely rotating self-gravitating ellipsoids. This is then employed to investigate the stability to homogeneous perturbations of rotating inviscid fluid ellipsoids. We recover results consistent with earlier predictions, and, in the process, also reconcile some contradictory conclusions about the stability of Maclaurin spheroids. Finally, we consider the equilibrium and stability of freely rotating self-gravitating Bingham fluid ellipsoids. We find that the equilibrium shapes of most such ellipsoids are secularly stable to homogeneous perturbations that preserve angular momentum, but not otherwise. We also touch upon the effect of shear thinning on stability.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Satellites;Shapes and Dynamics of Granular Minor Planets;2016-11-02

2. Asteroids;Shapes and Dynamics of Granular Minor Planets;2016-11-02

3. Granular Materials;Shapes and Dynamics of Granular Minor Planets;2016-11-02

4. Stability of binaries. Part II: Rubble-pile binaries;Icarus;2016-10

5. Stability of binaries. Part 1: Rigid binaries;Icarus;2015-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3