Internal bores: an improved model via a detailed analysis of the energy budget

Author:

Borden Zachary,Meiburg Eckart,Constantinescu George

Abstract

AbstractInternal bores, or internal hydraulic jumps, arise in many atmospheric and oceanographic phenomena. The classic single-layer hydraulic jump model accurately predicts the bore height and propagation velocity when the difference between the densities of the expanding and contracting layers is large (i.e. water and air), but fails in the Boussinesq limit. A two-layer model, which conserves mass separately in each layer and momentum globally is more accurate in the Boussinesq limit, but it requires for closure an assumption about the loss of energy across a bore. It is widely believed that bounds on the bore speed can be found by restricting the energy loss entirely to one of the two layers, but under some circumstances, both bounds overpredict the propagation speed. A front velocity slower than both bounds implies that, somehow, the expanding layer is gaining energy. We directly examine the flux of energy within internal bores using two- and three-dimensional direct numerical simulations and find that although there is a global loss of energy across a bore, a transfer of energy from the contracting to the expanding layer causes a net energy gain in the expanding layer. The energy transfer is largely the result of turbulent mixing at the interface. Within the parameter regime investigated, the effect of mixing is much larger than non-hydrostatic and viscous effects, both of which are neglected in the two-layer analytical models. Based on our results, we propose an improved two-layer model that provides an accurate propagation velocity as a function of the geometrical parameters, the Reynolds number, and the Schmidt number.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3