An inertia ‘paradox’ for incompressible stratified Euler fluids

Author:

Camassa R.,Chen S.,Falqui G.,Ortenzi G.,Pedroni M.

Abstract

AbstractThe interplay between incompressibility and stratification can lead to non-conservation of horizontal momentum in the dynamics of a stably stratified incompressible Euler fluid filling an infinite horizontal channel between rigid upper and lower plates. Lack of conservation occurs even though in this configuration only vertical external forces act on the system. This apparent paradox was seemingly first noticed by Benjamin (J. Fluid Mech., vol. 165, 1986, pp. 445–474) in his classification of the invariants by symmetry groups with the Hamiltonian structure of the Euler equations in two-dimensional settings, but it appears to have been largely ignored since. By working directly with the motion equations, the paradox is shown here to be a consequence of the rigid lid constraint coupling through incompressibility with the infinite inertia of the far ends of the channel, assumed to be at rest in hydrostatic equilibrium. Accordingly, when inertia is removed by eliminating the stratification, or, remarkably, by using the Boussinesq approximation of uniform density for the inertia terms, horizontal momentum conservation is recovered. This interplay between constraints, action at a distance by incompressibility, and inertia is illustrated by layer-averaged exact results, two-layer long-wave models, and direct numerical simulations of the incompressible Euler equations with smooth stratification.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference10 articles.

1. Dispersive dam-break and lock-exchange flows in a two-layer fluid

2. Long waves in ocean and coastal waters;Wu;J. Engng Mech.,1981

3. The stability of large-amplitude shallow interfacial non-Boussinesq flows;Boonkasame;Stud. Appl. Maths.,2011

4. Fully nonlinear internal waves in a two-fluid system

5. On the Boussinesq model for two-dimensional wave motions in heterogeneous fluids

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3