Momentum and energy of a solitary wave interacting with a submerged semi-circular cylinder

Author:

Klettner Christian A.,Eames Ian

Abstract

AbstractThe interaction of a weakly viscous solitary wave with a submerged semi-circular cylinder was examined using high-resolution two-dimensional numerical calculations. Two simulations were carried out: (a) as a baseline calculation, the propagation of a solitary wave over uniform depth; and (b) a solitary wave interacting with a submerged semi-circular cylinder. Large-scale simulations were performed to resolve the viscous boundary layers on the free surface, bottom and around the obstacle. Integral measures such as momentum and energy are analysed and compared against analytical approximations. For uniform depth, the loss in momentum and energy arises from the traction caused by the finite length of the domain bottom and the dissipation which is predominantly within the bottom boundary layer, respectively. The force on the cylinder is composed of (form) drag, inertial and hydrostatic components, the last factor arising from gradients in the height of the free surface. Morison’s semi-empirical equation is shown to provide a leading-order description of the force on the semi-circular cylinder. These elevated rates of change (momentum and energy) return to uniform depth values after a short period of time, indicating a localized effect of the obstacle. To interpret the flow field, vorticity, streamline and second invariant of the velocity gradient tensor plots were used to highlight relative thickness of boundary layers, vorticity distribution throughout the domain and stagnation points in the flow.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3