The structure of the absolutely unstable regions in the near field of low-density jets

Author:

Coenen Wilfried,Sevilla Alejandro

Abstract

AbstractThe viscous spatiotemporal stability properties of low-density laminar round jets emerging from circular nozzles or tubes are investigated numerically providing, for the first time, a separate treatment of the two particular cases typically studied in experiments: a hot gas jet discharging into a quiescent cold ambient of the same species, and an isothermal jet consisting of a mixture of two gases with different molecular weight, discharging into a stagnant ambient of the heavier species. To that end, use is made of a realistic representation for the base velocity and density profiles based on boundary-layer theory, with account taken of the effect of variable transport properties. Our results show significant quantitative differences with respect to previous parametric studies, and reveal that hot jets are generically more unstable than light jets, in the sense that they have larger associated critical density ratios for values of the Reynolds number and momentum thickness typically used in experiments. In addition, for several values of the jet-to-ambient density ratio, $S$, the downstream evolution of the local stability properties of the jet is computed as a function of the two main control parameters governing the jet, namely the Reynolds number, $\mathit{Re}$, and the momentum thickness of the initial velocity profile, ${\theta }_{0} / D$. It is shown that, for a given value of $S$, the $(\mathit{Re}, {\theta }_{0} / D)$ parameter plane can be divided in three regions. In the first region, defined by low values of $\mathit{Re}$ or very thick shear layers, the flow is locally convectively unstable everywhere. In the second region, with moderately large values of $\mathit{Re}$ and thin shear layers, the jet exhibits a localized pocket of absolute instability, away from boundaries. Finally, in the third region, that prevails in most of the $(\mathit{Re}, {\theta }_{0} / D)$ parameter plane, the absolutely unstable domain is bounded by the jet outlet. All the experiments available in the literature are shown to lie in the latter region, and the global transition observed in experiments is demonstrated to take place when the absolutely unstable domain becomes sufficiently large. The marginal frequency of the resulting global self-excited oscillations is shown to be fairly well described by the absolute frequency evaluated at the jet outlet, in agreement with the numerical results obtained by Lesshafft et al. (J. Fluid Mech., vol. 554, 2006, pp. 393–409) for synthetic jets.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3