Release of a viscous power-law fluid over an inviscid ocean

Author:

Pegler Samuel S.,Lister John R.,Worster M. Grae

Abstract

AbstractWe consider the two- and three-dimensional spreading of a finite volume of viscous power-law fluid released over a denser inviscid fluid and subject to gravitational and capillary forces. In the case of gravity-driven spreading, with a power-law fluid having strain rate proportional to stress to the power $n$, there are similarity solutions with the extent of the current being proportional to ${t}^{1/ n} $ in the two-dimensional case and ${t}^{1/ 2n} $ in the three-dimensional case. Perturbations from these asymptotic states are shown to retain their initial shape but to decay relatively as ${t}^{\ensuremath{-} 1} $ in the two-dimensional case and ${t}^{\ensuremath{-} 3/ (n+ 3)} $ in the three-dimensional case. The former is independent of $n$, whereas the latter gives a slower rate of relative decay for fluids that are more shear-thinning. In cases where the layer is subject to a constraining surface tension, we determine the evolution of the layer towards a static state of uniform thickness in which the gravitational and capillary forces balance. The asymptotic form of this convergence is shown to depend strongly on $n$, with rapid finite-time algebraic decay in shear-thickening cases, large-time exponential decay in the Newtonian case and slow large-time algebraic decay in shear-thinning cases.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference12 articles.

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Drainage of power-law fluids from fractured or porous finite domains;Journal of Non-Newtonian Fluid Mechanics;2022-07

2. Fracture patterns in viscoplastic gravity currents;Journal of Fluid Mechanics;2022-01-19

3. Instability of sliding viscoplastic films;Journal of Fluid Mechanics;2021-02-11

4. Can unconfined ice shelves provide buttressing via hoop stresses?;Journal of Glaciology;2020-02-13

5. The dynamics of confined extensional flows;Journal of Fluid Mechanics;2016-08-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3