Dromions of flexural-gravity waves

Author:

Alam Mohammad-Reza

Abstract

AbstractHere we show that weakly nonlinear flexural-gravity wave packets, such as those propagating on the surface of ice-covered waters, admit three-dimensional fully localized solutions that travel with a constant speed without dispersion or dissipation. These solutions, that are formed at the intersection of line-soliton mean-flow tracks, have exponentially decaying tails in all directions and are called dromions in contrast to lumps that decay only algebraically. We derive, by asymptotic expansion and assuming multiple scales for spatial and temporal variations, the three-dimensional weakly nonlinear governing equations that describe the coupled motion of the wavepacket envelope and the underlying mean current. We show that in the limit of long waves and strong flexural rigidity these equations reduce to a system of nonlinear elliptic–hyperbolic partial differential equations similar to the Davey–Stewartson I (DSI) equation, but with major differences in the coefficients. Specifically, and contrary to DSI equations, the elliptic and hyperbolic operators in the flexural-gravity equations are not canonical resulting in complications in analytical considerations. Furthermore, standard computational techniques encounter difficulties in obtaining the dromion solution to these equations owing to the presence of a spatial hyperbolic operator whose solution does not decay at infinity. Here, we present a direct (iterative) numerical scheme that uses pseudo-spectral expansion and pseudo-time integration to find the dromion solution to the flexural-gravity wave equation. Details of this direct simulation technique are discussed and properties of the solution are elaborated through an illustrative case study. Dromions may play an important role in transporting energy over the ice cover in the Arctic, resulting in the ice breaking far away from the ice edge, and also posing danger to icebreaker ships. In fact we found that, contrary to DSI dromions that only exist in water depths of less than 5 mm, flexural-gravity dromions exist for a broad range of ice thicknesses and water depths including values that may be realized in polar oceans.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3