Author:
Wang Bo-Fu,Ma Dong-Jun,Chen Cheng,Sun De-Jun
Abstract
AbstractThe instabilities and transitions of flow in a vertical cylindrical cavity with heated bottom, cooled top and insulated sidewall are investigated by linear stability analysis. The stability boundaries for the axisymmetric flow are derived for Prandtl numbers from 0.02 to 1, for aspect ratio $A$ ($A= H/ R= \mathrm{height} / \mathrm{radius} $) equal to 1, 0.9, 0.8, 0.7, respectively. We found that there still exists stable non-trivial axisymmetric flow beyond the second bifurcation in certain ranges of Prandtl number for $A= 1$, $0. 9$ and 0.8, excluding the $A= 0. 7$ case. The finding for $A= 0. 7$ is that very frequent changes of critical mode (azimuthal Fourier mode) of the second bifurcation occur when the Prandtl number is changed, where five kinds of steady modes $m= 1, 2, 8, 9, 10$ and three kinds of oscillatory modes $m= 3, 4, 6$ are presented. These multiple modes indicate different flow structures triggered at the transitions. The instability mechanism of the flow is explained by kinetic energy transfer analysis, which shows that the radial or axial shear of base flow combined with buoyancy mechanism leads to the instability results.
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
36 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献