Flow topology in compressible turbulent boundary layer

Author:

Wang Li,Lu Xi-Yun

Abstract

AbstractThe flow topologies of compressible turbulent boundary layers at Mach 2 are investigated by means of direct numerical simulation (DNS) of the compressible Navier–Stokes equations, and statistical analysis of the invariants of the velocity gradient tensor. We identify a preference for an unstable focus/compressing topology in the inner layer and an unstable node/saddle/saddle (UN/S/S) topology in the outer layer. The dissipation and dissipation production originate mainly from this UN/S/S topology. The enstrophy depends mainly on an unstable focus/stretching (UFS) topology, and the enstrophy production relies on a UN/S/S topology in the inner layer and on a UFS topology in the outer layer. The compressibility effect on the statistical properties of the topologies is investigated in terms of the ‘incompressible’, compressed and expanding regions. It is found that the locally compressed region tends to be more stable and the locally expanding region tends to be more dissipative. The compressibility is mainly related to unstable focus/compressing and stable focus/stretching topologies. Moreover, the features of the average dissipation, enstrophy, dissipation production and enstrophy production of the various topologies are clarified in the locally compressed and expanding regions.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3