Reynolds-stress-constrained large-eddy simulation of wall-bounded turbulent flows

Author:

Chen Shiyi,Xia Zhenhua,Pei Suyang,Wang Jianchun,Yang Yantao,Xiao Zuoli,Shi Yipeng

Abstract

AbstractIn the traditional hybrid RANS/LES approaches for the simulation of wall-bounded fluid turbulence, such as detached-eddy simulation (DES), the whole flow domain is divided into an inner layer and an outer layer. Typically the Reynolds-averaged Navier–Stokes (RANS) equations are used for the inner layer, while large-eddy simulation (LES) is used for the outer layer. The transition from the inner-layer solution to the outer-layer solution is often problematic due to the lack of small-scale dynamics in the RANS region. In this paper, we propose to simulate the whole flow domain by large-eddy simulation while enforcing a Reynolds-stress constraint on the subgrid-scale (SGS) stress model in the inner layer. Both the algebraic eddy-viscosity model and the one-equation Spalart–Allmaras (SA) model have been used to constrain the Reynolds stress in the inner layer. In this way, we improve the LES methodology by allowing the mean flow of the inner layer to satisfy the RANS solution while small-scale dynamics is included. We validate the Reynolds-stress-constrained large-eddy simulation (RSC-LES) model by simulating three-dimensional turbulent channel flow and flow past a circular cylinder. Our model is able to predict mean velocity, turbulent stress and skin-friction coefficients more accurately in turbulent channel flow and to estimate the pressure coefficient after separation more precisely in flow past a circular cylinder compared with the pure dynamic Smagorinsky model (DSM) and DES using the same grid resolution. Furthermore, the computational cost of the RSC-LES is almost the same as that of DES.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 114 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3