Shallow two-component gravity-driven flows with vertical variation

Author:

Kowalski Julia,McElwaine Jim N.

Abstract

AbstractGravity-driven geophysical mass flows often consist of a heterogeneous fluid–solid mixture. The complex interplay between the components leads to phenomena such as lateral levee formation in avalanches, or a granular front and an excess fluid pore pressure in debris flows. These effects are very important for predicting runout and the forces on structures, yet they are only partially represented in simplified shallow flow theories, since rearrangement of the mixture composition perpendicular to the main flow direction is neglected. In realistic flows, however, rheological properties and effective basal drag may depend strongly on the relative concentration of the components. We address this problem and present a depth-averaged model for shallow mixtures that explicitly allows for rearrangement in this direction. In particular we consider a fluid–solid mixture that experiences bulk horizontal motion, as well as internal sedimentation and resuspension of the particles, and therefore resembles the case of a debris flow. Starting from general mixture theory we derive bulk balance laws and an evolution equation for the particle concentration. Depth-integration yields a shallow mixture flow model in terms of bulk mass, depth-averaged particle concentration, the particle vertical centre of mass and the depth-averaged velocity. This new equation in this model for the particle vertical centre of mass is derived by taking the first moment, with respect to the vertical coordinate, of the particle mass conservation equation. Our approach does not make the Boussinesq approximation and results in additional terms coupling the momentum flux to the vertical centre of mass. The system is hyperbolic and reduces to the shallow-water equations in the homogeneous limit of a pure fluid or perfect mixing. We highlight the effects of sedimentation on resuspension and finally present a simple friction feedback which qualitatively resembles a large-scale experimental debris flow data set acquired at the Illgraben, Switzerland.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 60 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3