Perturbation response and pinch-off of vortex rings and dipoles

Author:

O’Farrell Clara,Dabiri John O.

Abstract

AbstractThe nonlinear perturbation response of two families of vortices, the Norbury family of axisymmetric vortex rings and the Pierrehumbert family of two-dimensional vortex pairs, is considered. Members of both families are subjected to prolate shape perturbations similar to those previously introduced to Hill’s spherical vortex, and their response is computed using contour dynamics algorithms. The response of the entire Norbury family to this class of perturbations is considered, in order to bridge the gap between past observations of the behaviour of thin-cored members of the family and that of Hill’s spherical vortex. The behaviour of the Norbury family is contrasted with the response of the analogous two-dimensional family of Pierrehumbert vortex pairs. It is found that the Norbury family exhibits a change in perturbation response as members of the family with progressively thicker cores are considered. Thin-cored vortices are found to undergo quasi-periodic deformations of the core shape, but detrain no circulation into their wake. In contrast, thicker-cored Norbury vortices are found to detrain excess rotational fluid into a trailing vortex tail. This behaviour is found to be in agreement with previous results for Hill’s spherical vortex, as well as with observations of pinch-off of experimentally generated vortex rings at long formation times. In contrast, the detrainment of circulation that is characteristic of pinch-off is not observed for Pierrehumbert vortex pairs of any core size. These observations are in agreement with recent studies that contrast the formation of vortices in two and three dimensions. We hypothesize that transitions in vortex formation, such as those occurring between wake shedding modes and in vortex pinch-off more generally, might be understood and possibly predicted based on the observed perturbation responses of forming vortex rings or dipoles.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3