On the interaction between a turbulent open channel flow and an axial-flow turbine

Author:

Chamorro L. P.,Hill C.,Morton S.,Ellis C.,Arndt R. E. A.,Sotiropoulos F.

Abstract

AbstractA laboratory experiment was performed to study the dynamically rich interaction of a turbulent open channel flow with a bed-mounted axial-flow hydrokinetic turbine. An acoustic Doppler velocimeter and a torque transducer were used to simultaneously measure at high temporal resolution the three velocity components of the flow at various locations upstream of the turbine and in the wake region and turbine power, respectively. Results show that for sufficiently low frequencies the instantaneous power generated by the turbine is modulated by the turbulent structure of the approach flow. The critical frequency above which the response of the turbine is decoupled from the turbulent flow structure is shown to vary linearly with the angular frequency of the rotor. The measurements elucidate the structure of the turbulent turbine wake, which is shown to persist for at least fifteen rotor diameters downstream of the rotor, and a new approach is proposed to quantify the wake recovery, based on the growth of the largest scale motions in the flow. Spectral analysis is employed to demonstrate the dominant effect of the tip vortices in the energy distribution in the near-wake region and uncover meandering motions.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3