Author:
Meldi Marcello,Sagaut Pierre
Abstract
AbstractThe time evolution of pressure statistics in freely decaying homogeneous isotropic turbulence (HIT) is investigated via eddy-damped quasi-normal Markovian (EDQNM) computations. The present results show that the time decay rate of pressure-based statistical quantities, such as pressure variance and pressure gradient variance, are sensitive to the breakdown of permanence of large eddies. New formulae for the associated time-decay exponents are proposed, which extend previous relations proposed in Lesieur, Ossia & Metais (Phys. Fluids, vol. 11, 1999, p. 1535). Particular attention is paid to finite-Reynolds-number (FRN) effects on the pressure spectrum and pressure statistics. The results also suggest that $R{e}_{\lambda } = O(1{0}^{4} )$ must be considered to observe a one-decade inertial range in the pressure spectrum with Kolmogorov $- 7/ 3$ scaling. This threshold value is larger than almost all existing direct numerical simulation (DNS) and experimental data, justifying the discussion about other possible scaling laws. The $- 5/ 3$ slope reported in some DNS data is also recovered by the EDQNM model, but it is observed to be a low-Reynolds-number effect. Another important result is that FRN effects yield a departure from asymptotic theoretical behaviours which appear similar to some effects attributed to intermittency by most authors. This is exemplified by the ratio between pressure-based and velocity-based Taylor microscales. Therefore, high-Reynolds-number DNS or experiments such that $R{e}_{\lambda } = O(1{0}^{4} )$ would be required in order to remove FRN effects and to analyse pure intermittency effects.
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献