Magnetohydrodynamic drift equations: from Langmuir circulations to magnetohydrodynamic dynamo?

Author:

Vladimirov V. A.

Abstract

AbstractWe derive the closed system of averaged magnetohydrodynamic (MHD) equations for general oscillating flows. The used small parameter of our asymptotic theory is the dimensionless inverse frequency, and the leading term for a velocity field is chosen to be purely oscillating. The employed mathematical approach combines the two-timing method and the notion of a distinguished limit. The properties of commutators are used to simplify calculations. The derived averaged equations are similar to the original MHD equations, but surprisingly (instead of the commonly expected Reynolds stresses) a drift velocity plays a part of an additional advection velocity. In the special case of a vanishing magnetic field $\mathbi{h}\equiv 0$, the averaged equations produce the Craik–Leibovich equations for Langmuir circulations (which can be called ‘vortex dynamo’). We suggest that, since the mathematical structure of the full averaged equations for $\mathbi{h}\not = 0$ is similar to those for $\mathbi{h}\equiv 0$, these full equations could lead to a possible mechanism of MHD dynamo, such as the generation of the magnetic field of the Earth.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On the Motion of Two Microspheres in a Stokes Flow Driven by an External Oscillator Field;International Journal of Mathematics and Mathematical Sciences;2021-11-22

2. Distinguished limits and drifts: between nonuniqueness and universality;Annales mathématiques du Québec;2021-10-21

3. Mean field electrodynamics: triumphs and tribulations;Journal of Plasma Physics;2018-08

4. Two-Timing Hypothesis, Distinguished Limits, Drifts, and Pseudo-Diffusion for Oscillating Flows;Studies in Applied Mathematics;2016-11-11

5. Vortex Dynamics of Oscillating Flows;Arnold Mathematical Journal;2015-04-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3