Nonlinear vorticity-banding instability in granular plane Couette flow: higher-order Landau coefficients, bistability and the bifurcation scenario

Author:

Shukla Priyanka,Alam Meheboob

Abstract

AbstractThe rapid granular plane Couette flow is known to be unstable to pure spanwise perturbations (i.e. perturbations having variations only along the mean vorticity direction) below some critical density (volume fraction of particles), resulting in the banding of particles along the mean vorticity direction: this is dubbed ‘vorticity banding’ instability. The nonlinear state of this instability is analysed using quintic-order Landau equation that has been derived from the pertinent hydrodynamic equations of rapid granular fluid. We have found analytical solutions for related modal/harmonic equations of finite-size perturbations up to quintic order in perturbation amplitude, leading to an exact calculation of both first and second Landau coefficients. This helped to identify the bistable nature of nonlinear vorticity-banding instability for a range of densities spanning from moderately dense to dense flows. For perturbations with small spanwise wavenumbers, the bifurcation scenario for vorticity banding unfolds, with increasing density from the dilute limit, as supercritical pitchfork $\rightarrow $ subcritical pitchfork $\rightarrow $ subcritical Hopf bifurcations. The transition from supercritical to subcritical pitchfork bifurcations is found to occur via the appearance of a degenerate/bicritical point (at which both the linear growth rate and the first Landau coefficient are simultaneously zero) that divides the critical line into two parts: one representing the first-order and the other the second-order phase transitions. Both subcritical oscillatory and stationary solutions have also been uncovered for dilute and dense flows, respectively, when the spanwise wavenumber is large. In all cases, the nonlinear solutions correspond to inhomogeneous states of shear stress and pressure along the vorticity direction, and hence are analogues of vorticity banding in other complex fluids. The quartic-order mean-flow resonance is evidenced in the parameter space for which the second Landau coefficient undergoes a jump discontinuity of infinite order. The importance of retaining higher-order terms to calculate the second Landau coefficient and their possible effects on the nature of bifurcations are elucidated.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3